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In this issue of Liver Transplantation, the article from
the University of Hong Kong by Man et al.1 introduces
potentially important concepts related to the mecha-
nisms involved in tumor progression associated to
surgical stress, specifically hepatic ischemia-reperfu-
sion and major hepatic resection. This study at-
tempted to determine the molecular mechanisms in-
volved in enhanced tumor progression exhibited in
the remnant liver following ischemia-reperfusion and
major hepatic resection. To study the effects of isch-
emia-reperfusion and major hepatic resection, the
expression of mitogenic/cell cycle–associated mole-
cules (Rho-associated coil-containing protein kinase
[ROCK], Cdc42, proliferating cell nuclear antigen
[PCNA]), adhesion-associated molecule (FAK), and
angiogenic factors (early growth response-1 [Egr-1]/
VEGF) in tumor tissues and cells were evaluated. The
data generated on the expression of these markers
have provided evidence which indicates that hepatic
surgical stress, such as ischemia-reperfusion and
major hepatic resection, stimulate tumor cell inva-
sion, migration, and metastasis. However, it is clear
that further studies are needed to address the precise
significance of the expression of these molecules in
relation to tumor progression. The mechanisms of
tumor progression are complex. Therefore, the re-
sults of the experiments reported in this study must
be regarded as preliminary. Nevertheless, the find-
ings in this study may help to elucidate the mecha-

nisms involved and the nature of tumor progression;
and, in addition, the findings suggest future thera-
peutic approaches.

TWO INCONSISTENT ASPECTS OF ISCHEMIA-
REPERFUSION OF ORGANS

Much attention has been devoted to understanding the
mechanisms of postischemic liver damage. In this con-
text, oxidative stress-mediated cell/tissue damage
must be considered. Oxidative stress during ischemia-
reperfusion was first studied in the early 1980s.2-4

Since then, xanthine oxidase-/neutrophil-induced oxi-
dative stress has been extensively studied as a major
cause of organ damage after reperfusion.4,5 In the
1990s, more attention has been paid to harmful cellular
reactive oxygen species (ROS), and their origin. Cellular
ROS of nonphagocytic cells are believed to originate
in mitochondria6.7 and/or membrane-associated Nox
(nicotineamide adenine dinucleotide phosphate [NADPH]-
oxidases) oxidase.8,9 It has been established that redox-
sensitive molecules play major roles in various patho-
physiological processes,10-13 with the result that the
concept of oxidative stress to cells and organs has un-
dergone dramatic changes. In general, ROS from: 1)
NADPH oxidase (neutrophils/phagocytes); 2) the mito-
chondrial respiratory complex14; and 3) Nox oxidase
(nonphagocytic cells) can explain the mediation of oxi-
dative stress during ischemia and after reperfusion.
ROS from the first 2 of these sources are considered to
be important in mediating cell damage (apoptosis or
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necrosis), and ROS from the third source may be re-
sponsible for redox-dependent signal transduction that
leads to apoptosis and proliferation (Fig. 1).

Cellular ROS activate some redox-dependent signals
and may regulate certain cell functions.15 Rac1 small
guanosine triphosphatase (GTPase) and the gp91 com-
ponent of NADPH oxidase/Nox are essential for activa-
tion of oxidase10; the former is definitely responsible for
the regulation of oxidase activity.16,17 Rac1, if bound to
guanosine triphosphate, activates Nox and mediates
oxidative stress in cells; this process may lead to ma-
lignant transformation in some cells.8,9,18,19

In general, tumor cells possess antiapoptotic/antiox-
idant properties, which appear to be unique character-
istics that facilitate their survival.20-22 Potentially, tu-
mor cells are more likely to survive ischemia-
reperfusion–induced damage than normal liver cells
(Fig. 2). When angiogenic EGR-1/VEGF and adhesion-
associated FAK are upregulated in tumor tissue, and
the microvascular environment is disrupted in peritu-
mor liver tissue, as reported in this study by Man et al.,1

further invasion of the tumor and metastasizing of the
tumor to remote organs will be facilitated.

HEPATIC RESECTION AND TUMOR
PROGRESSION

Liver regeneration after hepatic resection has also been
extensively studied. In particular, the mechanisms un-
derlying the initiation, maintenance, and termination of
liver regeneration have been investigated in vivo using
animal models.23-26

After hepatic resection, various molecules are in-
duced and/or secreted that promote regeneration by
various cells and organs, including the liver. In the
liver, gut-derived factors, such as lipopolysaccharide,
are upregulated after hepatic resection and are deliv-

ered to the liver via the portal venous system. These
factors activate hepatic nonparenchymal cells (includ-
ing Kupffer cells and stellate cells). Kupffer cells and
stellate cells secrete interleukin-6/tumor necrosis fac-
tor-alpha and hepatocyte growth factor/tumor growth
factor-beta, respectively, in response to hepatic resec-
tion. With regard to extrahepatic organs, the thyroid,
pancreas, adrenal gland, and duodenum secrete tri-
iodothronine, insulin, norepinephrine, and epidermal
growth factor, respectively, and, in addition, platelets
secrete serotonin23 (Fig. 1). It appears that the auto-
nomic nervous system must be involved in liver regen-
eration though the exact mechanism is still unclear.
There are many reports describing an inhibitory effect
of vagotomy on liver regeneration.27,28 In this context it
may be relevant that acetylcholine (Ach) receptors have
been reported on hepatocytes, Kupffer cells, and he-
patic sinusoidal cells.29-31

Tumor progression may be influenced by humoral
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Figure 1. Schematic scheme il-
lustrating the effects of hepatic
ischemia-reperfusion and major
hepatic resection on liver cell in-
jury and proliferation.
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Figure 2. Putative mechanisms of tumor cell survival, pro-
gression, and metastasis after surgical stress to the liver
(ischemia-reperfusion, major resection).
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regulation, which may be mediated by hormones,
growth factors, and cytokines. Some tumors, such as
those arising in lung, breast, prostate, liver, colon, and
rectum appear to be subject to humoral regulation of
their growth. Hence these tumors may be suitable tar-
gets for cancer therapy with antihumoral regi-
mens.32-40 Thus, proinflammatory cytokines induced
by ischemia-reperfusion and hormones released from
extrahepatic organs after hepatic resection may pro-
mote progression of liver tumors and metastasizing of
these tumors.

In conclusion, ischemia-reperfusion tends to disrupt
normal liver tissue, including the microvasculature,
and to create an environment that may promote tumor
progression. Antiapoptotic/antioxidative tumor cells
will be induced by direct oxidative mitogenic stimuli as
well as by indirect proinflammatory cytokine stimuli. In
addition, hepatic resection will induce tumor cells to
become more aggressive by promoting production of
cytokines by nonparenchymal liver cells and/or secre-
tion of hormones by extrahepatic tissues (Figs. 1 and 2).
The study by Man et al.1 may lead to an improved
understanding of the steps of tumor progression in var-
ious surgical settings.
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